
1

A Flexible Cluster Tool Simulation Framework with
Wafer Batch Dispatching Time Recommendation

Hsin-Ping Yen 1, Shiuan-Hau Huang1, Yan-Hsiu Liu2, Kuang-Hsien Tseng2, Ji-Fu Kung2, Yi-Ting Li1,
Yung-Chih Chen3, and Chun-Yao Wang1

1National Tsing Hua University, Taiwan, ROC
2United Microelectronics Corporation, Taiwan, R.O.C.

3National Taiwan University of Science and Technology, Taiwan, R.O.C.

Abstract—The semiconductor manufacturing process consists
of multiple steps and is usually time-consuming. Information
like the turnaround time of a certain batch of wafers can be
very useful for manufacturing engineers. A simulation model
of manufacturing process can help predict the performance of
manufacturing process efficiently, which is very beneficial to the
manufacturing engineers. The simulation result can also deliver
messages to system engineers for achieving better throughput
after adjustment. In this work, we propose a flexible simulation
framework for a cluster tool. We implemented the simulator
in C++ language with SystemC. The batch information used
for the design of simulator was gathered from industrial data.
The experimental results show that there is only less than 2%
difference between the simulation and the manufacturing data in
terms of entire processing time, which indicates the high accuracy
of the simulator. The experimental results with the proposed
dispatching method achieve a higher throughput compared to
the manufacturing data such that the dispatching time points
can be recommended to the system engineers.

Index Terms—cluster tool, simulation, wafer transferring
system.

I. INTRODUCTION

Semiconductor manufacturing process becomes more and
more complex with the advances of wafer technology.
Semiconductor manufacturing process includes etching,
deposition, photo-lithography, etc. The system that handles the
wafer transfer and processing is called a cluster tool. Due to
the increasing number of processing steps, the cluster tools
have also become more complicated. On top of the increasing
number of processing steps, a cluster tool often processes
multiple batches simultaneously for elevating the utilization
of the buffer arm, which is the bottleneck of the system.

The throughput of a cluster tool for batches of wafers
is valuable information to engineers. This information could
be gathered from the manufacturing data. However, since
the wafer manufacturing process is time-consuming, it is
inefficient to obtain this information after completing the
entire manufacturing process. Thus, a simulator for the cluster
tool, which is very efficient as compared with the actual
manufacturing process, is desired, and the throughput of a

This work is supported in part by the Ministry of Science and Technology
of Taiwan under MOST 109-2221-E-007-082-MY2, MOST 109-2221-E-155-
047-MY2, MOST 110-2224-E-007-007, MOST 111-2218-E-007-010, MOST
111-2221-E-007-121, MOST 111-2221-E-011-137-MY3, and UMC: I-2020-
10-184.

Fig. 1: Wafer paths of different cluster tool modes. (a) A
wafer path under a serial mode: chamber A → chamber B →
chamber C. (b) A wafer path under a parallel mode: (chamber
A or chamber B). (c) A wafer path under a serial-parallel
mode: (chamber A or chamber B) → chamber C → (chamber
D or chamber E).

cluster tool can be estimated accordingly. A simulator can also
show the time points for improvement, at which the system is
able to be adjusted to boost its productivity.

With the differences in objectives and manufacturers, cluster
tools vary in their configurations, modes, and scheduling.
The configuration of a cluster tool involves the number of
chambers and load locks. Cluster tools can be classified by
the number of arms for wafer transfer between chambers.
Single-armed and dual-armed cluster tools are widely used.
The modes in the cluster tools can be categorized into serial
mode, parallel mode, or serial-parallel mode. Their wafer paths
are shown in Fig. 1, where each node represents a chamber.
A serial mode cluster tool sends each wafer to a series of
chambers in a sequence. A parallel mode cluster tool sends
each wafer to only one chamber among multiple available
chambers. For a serial-parallel cluster tool, a wafer is sent
to a series of chambers, but some steps may have multiple
available chambers. This mode is often used when some steps
have a longer processing time such that multiple chambers are
reserved for those time-consuming steps.

Many simulation methods have been proposed over the

20
23

 2
4t

h
In

te
rn

at
io

na
l S

ym
po

si
um

 o
n

Q
ua

lit
y

El
ec

tro
ni

c
D

es
ig

n
(I

SQ
ED

) |
 9

79
-8

-3
50

3-
34

75
-3

/2
3/

$3
1.

00
 ©

20
23

 IE
EE

 |
D

O
I:

10
.1

10
9/

IS
Q

ED
57

92
7.

20
23

.1
01

29
37

5

Authorized licensed use limited to: National Tsing Hua Univ.. Downloaded on August 12,2023 at 07:25:56 UTC from IEEE Xplore. Restrictions apply.

2

years [7] [8] [14] [17] [21], such as Cellular Automata
[1] [18], event graph [13], and Petri Net [23], etc. The
methods mentioned above are not easily portable when
encountering different cluster tool configurations. [3] predicted
the throughput of a cluster tool using machine learning
methods. Machine learning methods can predict the throughput
of the cluster tool, but it does not disclose the scheduling logic
behind the system. There also have been some simulation
platforms [22] developed for analyzing the wafer transfer
procedure to increase the throughput. [22] provided the option
to choose the mode between serial and parallel, but not
the more complex serial-parallel mode. Furthermore, the
simulation was only conducted between the chambers.

In this work, we address the portability issue of the cluster
tools by separating the functionality of cluster tool components
from the scheduling of the system. When adapting to a new
configuration, the components in the cluster tools can be
reused and the engineers just re-adjust the scheduling to match
the new system. The modes in the cluster tools are different
in their wafer paths. Our simulator uses the wafer path of the
batch to determine the next location of the wafer such that
different modes of the cluster tool can be accommodated.

Aside from the cluster tool configurations and modes,
scheduling methods can also be different. The scheduling
methods for cluster tools have been studied in the past [4]–[6],
[9], [10], [19], [20], which directly influence the throughput
of the cluster tool. In this work, we propose two scheduling
methods. One is based on the state of the cluster tool, and the
other is based on the sequence of arm movements.

Last, the throughput of the cluster tool can also be affected
by the dispatching time points of batches. The dispatching
method indicates the sequences and locations of the batches.
If a batch of wafers arrives later, the idle time between
batches is a waste. If a batch of wafers arrives earlier, the
cluster tool might not have available resources for it to be
processed. This batch is forced to wait at the cluster tool
though it could be sent to another cluster tool for processing
earlier. Batch dispatching is usually determined by experienced
engineers, who are familiar with the cluster tools and control
the timing and sequence of the batches to be processed. [15]
[16] proposed dispatching rules regarding recipe arrangements
with semiconductor fabrication plants (fabs) simulation, which
simulate batches with different recipes being processed on
a set of cluster tools in a factory. To prevent batches from
arriving later or earlier, we propose a dispatching method,
which recommends the dispatching time point to engineers.
The experimental results also show that the simulations using
the proposed dispatching method yield a higher throughput
than the data from the fabs.

The main contributions of this work are as follows:

• We propose a flexible simulation framework, which can
be deployed on a variety of cluster tools.

• We propose two scheduling methods that can be used in
the simulator.

• The simulator using the proposed dispatching method
recommends the dispatching time points for achieving a
higher throughput.

Fig. 2: Single cluster tool configuration.

II. BACKGROUND

A. Cluster Tool Configuration

As shown in Fig. 2, a cluster tool has the following
components: Load Port, Robot Arm, Aligner, Load Lock,
Buffer Arm, and Chambers.

After a batch of wafers arrives at the load port, each wafer
will be transferred to chambers sequentially. For instance,
assume that the recipe is a single-step process, the wafer path
is as follows: Load Port → Aligner → Load Lock → Chamber
→ Load Lock → Load Port.

We detail a wafer’s journey inside a cluster tool using Fig.
2. After the wafer is transferred to the aligner by the robot
arm, the aligner starts to rotate the wafer. We need to ensure
that the wafer is perfectly aligned when being placed into the
chamber. After the alignment, the wafer is transferred into
the load lock. There is a gate on each side of a load lock.
Both gates have to be closed for performing the air venting
and pumping procedure. The wafer is currently on its way
to the chamber. The load lock starts pumping air to raise the
air pressure to the same level as it is on the chamber side.
When the load lock opens the gate on the chamber side, the
buffer arm then transfers the wafer into the appointed chamber.
Each chamber has a gate, which is closed during processing.
After being processed, the wafer travels back to the load lock.
The load lock performs the air venting and cooling procedure
simultaneously before opening its gate on the load port side.
Finally, the wafer returns back to the load port, where the
original batch arrived.

Note that a wafer will pass through a loading and unloading
phase between two components. The loading and unloading
duration can be changed depending on different types of
cluster tools. For some cluster tools, a load lock is assigned to
a specific batch of wafer. However, for the others, a load lock
is shared among different batches. As a result, a simulation
framework needs to accommodate those differences.

B. Inputs/Outputs and Features of the Simulator

The following items are the inputs of the simulator:
• Wafer batch information: Batch names, recipes,

processing time, assigned load ports, and dispatching
time point.

Authorized licensed use limited to: National Tsing Hua Univ.. Downloaded on August 12,2023 at 07:25:56 UTC from IEEE Xplore. Restrictions apply.

3

• Parameter settings: Time duration for transferring wafers
using the robot arm and the buffer arm, wafer loading
and unloading duration, pumping and venting duration at
load locks, and aligning duration at the aligner.

• Buffer arm and robot arm’s wafer transferring order: This
is produced by different scheduling methods. More details
will be explained in Section III-B.

The output of the simulator is a log file indicating the
duration of each wafer at each component. It is presented in
Gantt chart [2] such that it can be graphically analyzed by
engineers.

The simulator has the following features:
• System Portability: The simulator can be easily deployed

on different types of cluster tools.
• Scheduling diversity: The simulator accepts different

kinds of scheduling methods for performance comparison
under the same system configuration.

• Throughput estimation and dispatching time
recommendation: After simulation, the dispatching
time of batches is recommended for achieving a higher
throughput.

C. Log File

In this work, we need two types of log files to construct the
simulator. The first one records all the wafer movements in the
cluster tool. It contains the details including wafer ID, lot ID,
from/to locations, and slot number of load locks and load ports.
This type of log file provides the configuration of cluster tool
and the process recipe, which indicates the processing steps
of each batch of wafers.

The other type of log file is an event log, which details
the operation steps for each part of the cluster tool. For
instance, the operation steps of load lock include the gate
opening/closing, air pumping/venting, and cooling procedures.
Those are events recorded in the event log, and we can
examine the relationship between events to understand the
logic of the entire system. More details will be discussed in
Section III.

III. PROPOSED FRAMEWORK

This section describes the proposed simulator framework.
We also emphasize the design insights that allow the simulator
to have the features mentioned in Section II-B. For the system
portability, our design separates the scheduling methods from
the functionality of each component. This is because when
the components work independently, it is easy to reuse them
for constructing a new simulator with different configurations.
For the scheduling diversity, we propose two methods. The
first one uses the state of the cluster tool to determine the
corresponding action. The other one uses a component string
to indicate the movement of the buffer arm and the robot arm.
For batch dispatching, we propose a method that determines
the input dispatching time points for each batch such that a
higher throughput of a cluster tool is achieved. The simulator
also provides the option to use the input dispatching time
points given by engineers.

Fig. 3: The Finite State Machine for Load Port.

A. Module Construction

We model each component of the cluster tool by Finite
State Machines (FSMs) [11] [12]. In addition to the existing
components of the cluster tool, we also need a scheduling
module and a dispatching module. The scheduling module
decides the action of each component based on the state of the
cluster tool. The dispatching module controls the dispatching
method and sends batch information to the load port under the
scheduling module’s instructions. In the following paragraphs,
we introduce the FSM design of each component in a cluster
tool.

1) Load Port: After receiving batches of wafers from the
dispatching module, the load port checks whether the wafers
are present in the load port or not. The wafers are then sent into
the chambers sequentially. The load port continues sending
and receiving wafers until all the wafers from this batch are
processed and sent back to the load port.

Fig. 3 shows the FSM of the load port. The blue
dotted lines indicate the signals received from the scheduling
module. Each component’s module needs instructions from the
scheduling module when it exchanges the wafer information
with the other modules. For instance, after receiving a
wafer loading/unloading signal, the wafer information will be
received/delivered to the robot arm. The load port also receives
batch loading/unloading signals from the scheduling module,
it then exchanges the batch information with the dispatching
module.

Idle state represents that a load port is empty. After receiving
a batch of wafers and conducting self checking, the load port
will be at Ready state and start sending out wafers to be
processed. At Load/Unload state, the wafer information will
be exchanged with the robot arm. When there is no wafer that
needs to be sent out, the load port will be at Wait state to
collect the remaining wafers instead of going back to Ready
state. After the whole batch is processed completely, the load
port will be at All done state until the scheduling module
notifies the load port to unload the batch.

2) Aligner: The tasks of an aligner are wafer loading,
unloading, and aligning. The FSM of the aligner, as shown
in Fig. 4(a), includes the loading/unloading procedure. After
finishing aligning at Aligning state, the aligner will wait for
the robot arm to pick up the wafer.

Authorized licensed use limited to: National Tsing Hua Univ.. Downloaded on August 12,2023 at 07:25:56 UTC from IEEE Xplore. Restrictions apply.

4

(a) Aligner (b) Robot Arm

Fig. 4: The Finite State Machines for Aligner and Robot Arm.

Fig. 5: The Finite State Machine for Load Lock.

3) Robot Arm: The robot arm is used to move wafers
among the load ports, the aligner, and the load locks. As shown
in Fig. 4(b), the FSM of the robot arm includes Load and
Unload states. The robot arm receives and delivers the wafer
information to its neighboring components: load port, aligner,
and load lock. At Transferring state, the robot arm transfers
the wafer to the destination. The robot arm holds the wafer
at Wait state until the unloading signal is asserted from the
scheduling module.

4) Load Lock: A load lock has two slots. One of them is
for wafers returning back to the load ports, the other is for
wafers heading towards the chambers. Our work uses one bit
to represent the occupancy of slots. “1” represents that the
slot is occupied and “0” represents that the slot is vacant. In
Fig. 5, the last two bits of a state, from the left to the right,
represent the slots for wafers returning back to the load ports
and heading towards the chambers, respectively. The IN and
OUT states refer to the gates of the load lock being opened
on the chamber side and the load port side, respectively. For
instance, IN 10 represents that the load lock only has a wafer
that will return back to the load port while the gate on the
chamber side is opened.

The dotted-line boxes, Valve change followed by two bits
representing slot occupancy in Fig. 5, details the air pressure
changes at the load lock. Using Valve change 00, shown
in Fig. 6, as an example, after the venting and pumping
procedures, the load lock will stay at Wait OUT 00 and
Wait IN 00 states. Since the decision on the gate opening is
controlled by the scheduling module, the load lock will only
move to the Opening state after receiving the signal from the
scheduling module.

5) Buffer Arm: Before picking up a wafer, the buffer arm
needs to move to the correct location. As shown in Fig. 7, after

Fig. 6: The Finite State Machine for Valve change 00.

Fig. 7: The Finite State Machine for Buffer Arm.

receiving a signal from the scheduling module, the buffer arm
enters Moving state for its waferless rotation. The buffer arm
is then ready to pick up a wafer at Ready state. After picking
up a wafer and transferring it at Transferring state, the buffer
arm stays at Wait state for the scheduling module’s unloading
instruction.

6) Chamber: The chambers of the cluster tool have two
tasks, wafer processing and cleaning. As shown in Fig. 8, the
chamber starts at Idle state where it is waferless and its gate
is closed. For processing wafer, the chamber opens the gate
under the scheduling module’s instruction. After opening the
gate, the chamber is ready to receive wafers at Opened state.
The chamber starts processing wafer at Processing state after
the wafer is loaded and the gate is closed. After processing,
the chamber opens the gate and waits for the buffer arm to
pick up the wafer at Wait state.

There are two time points for chamber cleaning. The first
one is when the chamber stays at the Idle state for a period of
time exceeding the time limit. The other is when the chamber
receives the cleaning instruction from the scheduling module.
The cleaning procedure is represented by Clean state in Fig.
8.

B. Scheduling

In this section, we discuss the tasks of the scheduling
module, which includes the instructions for the robot arm and
buffer arm movements, for gate opening at the chambers and
the load locks, and for the resource allocation about a batch
of wafers.

We propose two scheduling methods regarding the robot
arm and buffer arm movements: priority scheduling and
fixed sequence scheduling. For the priority scheduling,

Authorized licensed use limited to: National Tsing Hua Univ.. Downloaded on August 12,2023 at 07:25:56 UTC from IEEE Xplore. Restrictions apply.

5

TABLE I: An example for Priority Scheduling.

Priority Load Lock Buffer Arm Chamber A Chamber B Instruction Wafer Source Wafer Destination
IN 01 / IN 11 Signal: Move

To: Buffer Arm1 / Wait IN 01 Idle Idle - Load Lock Chamber A
/ Wait IN 11

IN 01 / IN 11 Signal: Move
To: Buffer Arm2 / Wait IN 01 Idle - Idle Load Lock Chamber B

/ Wait IN 11
IN 01 / IN 00 Signal: Move

To: Buffer Arm3 / Wait IN 01 Idle Wait - Chamber A Load Lock
/ Wait IN 00

IN 01 / IN 00 Signal: Move
To: Buffer Arm4 / Wait IN 01 Idle - Wait Chamber B Load Lock

/ Wait IN 00

Fig. 8: The Finite State Machine for Chamber.

the scheduling module determines the movements of the
robot arm and buffer arm by checking the states of their
neighboring components. The scheduling module checks for
three conditions before initiating an arm movement. The first
one is to ensure that the arm is available, in other words, at
Idle state. The second is that the wafer source component,
where the wafer is currently located, is ready to unload the
wafer. Finally, to prevent deadlocks, the scheduling module
needs to ensure that the wafer destination component, where
the wafer will be transferred, is ready to receive the wafer.

Assume that the cluster tool has one load lock and two
chambers, Chamber A and Chamber B, and that the wafer in
the load lock can be processed at any one of these chambers.
With this configuration, TABLE I shows an example that lists
the possible buffer arm movements satisfying the conditions
mentioned above. Column 1 shows the priority number of the
buffer arm movement. The priority scheduling arranges all the
possible movements in an order, and assigns each movement
a priority number, where the smaller number represents the
higher priority. Columns 2 to 4 present the states of the
components. The “-” in TABLE I means that the state of the
component is irrelevant for this buffer arm movement. The
Instruction column shows the signal sent by the scheduling
module and the component where the signal is sent to. The
Wafer Source column and the Wafer Destination column show
where the wafer is currently located and the place the wafer
will be transferred to, respectively. For instance, the first row
shows the initiation of a buffer arm movement transferring the
wafer from the load lock to Chamber A. The first condition
is that the buffer arm needs to be at Idle state. The second

Fig. 9: Buffer arm movements with different component
strings, where “L” represents the load lock, “A” represents
Chamber A, and “B” represents Chamber B. (a) Component
string: B-L’-L-B’-A-L’-L-A’. (b) Component string: B-L’-A-
L’-L-A’-L-B’. (c) Component string: A-L’-B-L’-L-B’-L-A’.

condition is that the load lock has the wafer ready to be
unloaded. The load lock module in the first row can be in
IN 01, IN 11, Wait IN 01, or Wait IN 11 states. All of these
states represent that the load lock has a wafer heading towards
the chambers for processing. Finally, Chamber A has to be
available to receive the wafer. In other words, it has to be at
Idle state. When all the conditions are satisfied, the scheduling
module then sends Move instruction to the buffer arm. Note
that the states shown in TABLE I can be changed under
different cluster tools. For instance, in the first row, if the load
lock’s gate has to be opened for this buffer arm movement,
Wait IN 01 and Wait IN 11 states will be excluded since both
states represent that the load lock is with closed gates.

For the fixed sequence scheduling, the scheduling module
uses a component string to represent the sequence of
components visited by an arm. The buffer arm and the
robot arm have their corresponding component strings. Each
component has a pair of characters in the string representing
a wafer loading and unloading procedure at the component.
Specifically, “ A ” indicates the wafer unloading procedure
at Chamber A, and “ A’ ” indicates the loading procedure at
Chamber A.

Fig. 9. shows Gantt charts with different buffer arm
movements. The rectangles represent the occupancy of wafers
at the component. The row of Buffer Arm shows the sequence
about chambers and load lock visited by the buffer arm. The
sequence is represented by the component string. For instance,
in Fig. 9(a), a wafer at Chamber B is unloaded and transferred

Authorized licensed use limited to: National Tsing Hua Univ.. Downloaded on August 12,2023 at 07:25:56 UTC from IEEE Xplore. Restrictions apply.

6

TABLE II: An example for Gate Opening in Load Lock and Chamber.

Load Lock Buffer Arm Buffer Arm Destination Chamber Instructions
Wait IN 01 / Wait IN 11 Moving Load Lock - Load Lock: Open gate
Wait IN 00 / Wait IN 10 Transfer Load Lock - Load Lock: Open gate

- Transfer Chamber Idle Chamber: Open gate

to the load lock (L) by the buffer arm. Then another wafer
at the load lock is loaded and transferred to Chamber B
by the same buffer arm. Next, the wafer at Chamber A is
unloaded and transferred to the load lock, and another new
wafer is transferred and loaded into Chamber A for processing.
The corresponding component string is B-L’-L-B’-A-L’-L-
A. The scheduling module refers to the component strings
and the three conditions mentioned above when initiating
an arm movement. For instance, the first row of TABLE I
represents that the load lock has a wafer to be unloaded
and transferred to Chamber A for processing. This scenario
can be described with the component string containing L-A’.
The scheduling module guides the buffer arm to move only
when all the three conditions are met. With fixed sequence
scheduling, a component string generated by any scheduling
method can be tested on the simulator under the same cluster
tool configuration.

The scheduling module guides the gates to be opened before
a wafer is unloaded from chambers or load locks, or loaded
into chambers or load locks. As shown in TABLE II, the
scheduling module checks the state and destination of the
buffer arm to determine if the gate should be opened at the
chamber or load lock.

When a new batch of wafers arrives at the load port, the
scheduling module needs to check if the resources such as
chambers and load locks are available. If the chambers and
load locks are available, the load port then starts sending out
wafers to be processed. After a batch of wafers leaves the load
port, the scheduling module checks if the current resources
can be released for the batches at other load ports currently.
The scheduling module keeps track of the relations between
the batch of wafers and the resources. Before initiating any
arm movement, the relations between the batch of wafers and
the resources are checked. In other words, only the resources
related to the batch are checked for the arm movement. For
instance, for the buffer arm movements, the scheduling module
only checks the states of chambers and load locks related to
the batch.

C. Batch Dispatching

The dispatching module is responsible for batch dispatching.
As shown in Fig. 10, at Idle state, the dispatching module
checks if any batch is ready to be dispatched into the load port.
The dispatching module enters Ready state with the chosen
batch, then the batch is sent into the load port after receiving
Enable dispatch from the scheduling module.

This framework accepts two dispatching methods, self-
dispatch and dispatch on demand. For the self-dispatch, the
dispatching module uses the input dispatching time point given
by engineers to dispatch the batch. When the scheduling
module confirms that the dispatching module is at Ready state,

Fig. 10: The Finite State Machine for the dispatching module.

TABLE III: Batch information of Cluster Tool X.

Batch Name Number of wafers Process Chamber
X Batch 1 25 Chamber A / Chamber B
X Batch 2 4 Chamber C / Chamber D
X Batch 3 25 Chamber C / Chamber D
X Batch 4 25 Chamber A / Chamber B
X Batch 5 25 Chamber A / Chamber B
X Batch 6 25 Chamber C / Chamber D
X Batch 7 25 Chamber A / Chamber B
X Batch 8 25 Chamber D

and the assigned load port is available for the batch, it sends
Enable dispatch signal to the load port for loading the batch.

For the proposed dispatch on demand, the dispatching
module receives the request for a new batch of wafers from
the scheduling module when the resources are available. For
this method, our framework gives users two options regarding
the dispatching order. One is to dispatch based on the batch
ordering. The other is to dispatch the batch that can acquire
the most available resources. With dispatch on demand, the
dispatching time point of each batch is gathered during the
simulation. After the simulation, the dispatching time point is
recommended to engineers. Since a new batch is requested
immediately after the resources become available with this
method, it greatly reduces the idle time of those resources.
With less idle time at the chambers, the cluster tool processes
these batches of wafers more efficiently. Therefore, a higher
throughput of a cluster tool is achieved.

IV. EXPERIMENTAL RESULTS

The proposed cluster tool simulation framework was
implemented in C++ language with SystemC. The log file
information was provided by a semiconductor manufacturer in
Taiwan. The Gantt charts were generated by using the plotly
Python library [24].

The experiments were performed on a cluster tool, Cluster
Tool X. The cluster tool is parallel mode single-armed with
three load ports, one aligner, one robot arm, two load locks,
one buffer arm, and four chambers. The batch information
used in the simulation is shown in TABLE III. The Process
Chamber column shows the chambers where the batches can
be processed. Most of the batches can be processed at either

Authorized licensed use limited to: National Tsing Hua Univ.. Downloaded on August 12,2023 at 07:25:56 UTC from IEEE Xplore. Restrictions apply.

7

chambers A and B, or chambers C and D. Note that X Batch
2 is a test batch containing only four wafers.

The comparisons of experimental results about Cluster Tool
X and its simulations are summarized in TABLE IV. The
Scheduling Method column and Dispatching Method column
show the methods used in the simulation. Dispatch on demand
can only be paired with priority scheduling since the arm
movement sequence cannot be predicted beforehand. The
Processing Time column represents the time duration between
the first wafer being unloaded from the load port and the
last wafer being loaded into the load port. With T(Simulation)
denoting to the processing time of the simulation and T(Real)
denoting to the processing time of the cluster tool, the Error
Rate column is calculated using the following equation:

Error Rate (%) =
|T (Simulation)− T (Real)|

T (Real)

The simulation results of priority scheduling and fixed
sequence scheduling have 1.91% and 1.95% error rates,
respectively. The processing time of simulation with dispatch
on demand is eight hours and seven seconds, 43 minutes and
11 seconds shorter than the real processing time. In other
words, the simulation using dispatch on demand yields a
higher throughput than the cluster tool. The simulator then
returns the dispatching time points to engineers for improving
the throughput of the cluster tool in the succeeding runs.
The recommended dispatching time points of Cluster Tool
X batches are shown in TABLE V. Using the first batch
dispatching time point as a reference point, the dispatching
time points for the other batches are shown using |Batch
dispatching time - First batch dispatching time|.

The Gantt charts of data generated by Cluster Tool X and
the simulation result with dispatch on demand are shown in
Fig. 11 and Fig. 12, respectively. A, B, C, and D represent
the chambers. Load Lock1 s1 and Load Lock2 s1 represent
the slots for wafers heading towards the chambers, and
Load Lock1 s2 and Load Lock2 s2 represent the slots for
wafers returning to the load ports. The Gantt charts show that
when a batch of wafers can be processed at two chambers,
the wafers are placed alternately between these two chambers.
By dispatching a new batch immediately after the resources
become available, dispatch on demand reduces the idle time
between batches. Since the idle time between batches are
reduced, the batches of wafers in Fig. 12 are more compressed
in time with dispatch on demand as compared to that for
Cluster Tool X.

Note that the simulation time of all the experiments is less
than one second, while the actual processing time of cluster
tools is more than eight and a half hours. Hence, our simulator
provides a relatively accurate result with high efficiency.

V. CONCLUSION

In this paper, we discuss the functionality of each
component in a cluster tool, and propose a flexible
simulation framework on which a variety of cluster tools
can be implemented. With priority scheduling, the scheduling
decisions can be described using the states of components.
Priority scheduling allows the scheduling logic to be observed

by users. The fixed sequence scheduling method provides the
option for different schedulings to be deployed on the same
cluster tool. The proposed dispatching method, dispatch on
demand, provides the dispatching time points of batches for
achieving a higher throughput. Finally, the experimental results
show that the proposed simulation framework can estimate the
whole processing time with a small error rate in terms of time
difference and can perform simulation with different wafer
paths easily.

REFERENCES

[1] Tung-He Chou, Yu-Chih Chang, Binglung Yu, Chun-Fu Chen,
Yung-Tai Hung, Tuung Luoh, Ling-Wuu Yang, Tahone Yang, and
Kuang-Chao Chen, “Capacity Simulation by Cellular Automation in
Endura Platform,” in Proc. e-Manufacturing and Design Collaboration
Symposium, 2016.

[2] Henry L. Gantt, “A graphical daily balance in manufacture,”
Transactions of the American Society of Mechanical Engineers, vol 24,
pp. 1322–1336, 1903.

[3] Taehee Jeong, Deeksha Prakash Kankalale, Raymond Chau, and Hyeran
Jeon, “Going Deeper or Wider: Throughput Prediction for Cluster Tools
with Machine Learning,” in Proc. International Conference on Big Data
Computing, Applications and Technologies, 2019.

[4] Chihyun Jung and Tae-Eog Lee, “An Efficient Mixed Integer
Programming Model Based on Timed Petri Nets for Diverse
Complex Cluster Tool Scheduling Problems,” IEEE Transactions on
Semiconductor Manufacturing, 2012, vol. 25, no. 2, pp. 186-199.

[5] Chihyun Jung and Tae-Eog Lee, “Cyclic Scheduling of Cluster Tools
with Nonidentical Chamber Access Times Between Parallel Chambers,”
IEEE Transactions on Semiconductor Manufacturing, 2012, vol. 25, no.
3, pp. 420-431.

[6] Dae-Kyu Kim, Tae-Eog Lee, and Hyun-Jung Kim, “Optimal Scheduling
of Transient Cycles for Single-Armed Cluster Tools,” in Proc.
International Conference on Automation Science and Engineering, 2013,
pp. 874-879.

[7] Ja-Hee Kim, Tae-Eog Lee, Hwan-Yong Lee, and Doo-Byeong Park,
“Scheduling Analysis of Time-Constrained Dual-Armed Cluster Tools,”
IEEE Transactions on Semiconductor Manufacturing, 2003, vol. 16, no.
3, pp. 521-535.

[8] Ja-Hee Kim and Tae-Eog Lee, “Schedulability Analysis of Time-
Constrained Cluster Tools with Bounded Time Variation by an Extended
Petri Net,” IEEE Transactions on Automation Science and Engineering,
2008, vol. 5, no. 3, pp. 490-504.

[9] Sung-Gil Ko, Tae-Sun Yu, and Tae-Eog Lee, “Scheduling Dual-Armed
Cluster Tools for Concurrent Processing of Multiple Wafer Types Witw
Identical Job Flows,” IEEE Transactions on Automation Science and
Engineering, 2019, vol. 16, no. 3, pp. 1058-1070.

[10] Jun-Ho Lee, Hyun-Jung Kim, and Tae-Eog Lee, “Scheduling Cluster
Tools for Concurrent Processing of Two Wafer Types,” IEEE
Transactions on Automation Science and Engineering, 2014, vol. 11,
no. 2, pp. 525-536.

[11] George H. Mealy, “A method for synthesizing sequential circuits,” Bell
Labs Technical Journal, vol 34, pp.1045-1079, 1955.

[12] Edward F. Moore, “Gedanken-Experiments on Sequential Machines,”
Automata studies, pp. 129–153, 1956.

[13] David A. Nehme and Neal G. Pierce, “Evaluating the throughput
of cluster tools using event-graph simulations,” in Proc. Advanced
Semiconductor Manufacturing Conference and Workshop (ASMC), 1994,
pp. 189–192.

[14] Kyungsu Park and James R. Morrison, “Controlled Wafer Release
in Clustered Photolithography Tools Flexible Flow Line Job Release
Scheduling and an LMOLP Heuristic,” IEEE Transactions on
Automation Science and Engineering, 2015, vol. 12, no. 2, pp. 642-656.

[15] Sang C. Park, Euikoog Ahn, Yongho Chung, Ka-ram Yang, Byung H.
Kim, and Jeong C. Seo, “Fab Simulation with Recipe Arrangement if
Tools,” in Proc. Winter Simulations Conference (WSC), 2013, pp. 3840-
3849.

[16] Paht Te Quek, Boon Ping Gan , Song Lian Tan, Chan Lai Peng, and Bart
vd Heijden, “Analysis of the front-end wet strip efficiency performance
for productivity,” in Proc. International Symposium on Semiconductor
Manufacturing, 2007, pp. 1–4.

[17] Shadi Rostami, Babak Hamidzadeh, and Dan Camporese, “An Optimal
Periodic Scheduler for Dual-arm Robots in Cluster Tools with Residency
Constraints,” IEEE Transactions on Robotics and Automation, 2001, vol.
17, no. 5, pp. 609-619.

Authorized licensed use limited to: National Tsing Hua Univ.. Downloaded on August 12,2023 at 07:25:56 UTC from IEEE Xplore. Restrictions apply.

8

TABLE IV: Processing time of Cluster Tool X and simulation results.

Approach Scheduling Method Dispatching Method Processing Time Error Rate (%)
Cluster Tool X - - 8 hours 43 minutes 18 seconds -

Simulation
Priority Scheduling Self-dispatch 8 hours 33 minutes 4 seconds 1.91

Fixed Sequence Scheduling 8 hours 33 minutes 16 seconds 1.95
Priority Scheduling Dispatch on Demand 8 hours 0 minutes 7 seconds -

TABLE V: Recommended dispatching time points of Cluster Tool X.

Batch Name |Batch dispatching time - First batch dispatching time|
X Batch 1 0 hours 0 minutes 0 seconds
X Batch 2 0 hours 0 minutes 0 seconds
X Batch 3 0 hours 13 minutes 49 seconds
X Batch 4 1 hours 13 minutes 27 seconds
X Batch 5 2 hours 14 minutes 38 seconds
X Batch 6 2 hours 30 minutes 15 seconds
X Batch 7 3 hours 46 minutes 57 seconds
X Batch 8 4 hours 12 minutes 15 seconds

Fig. 11: The Gantt chart of Cluster Tool X.

Fig. 12: The Gantt chart of simulation with Cluster Tool X batch information using Dispatch on Demand.

[18] Hiroe Watanabe, “Development of Wafer Transfer Simulator Based
on Cellular Automata,” IEEE Transactions on Semiconductor
Manufacturing, 2015, vol. 28, no. 3, pp. 283-288.

[19] Uno Wikborg and Tae-Eog Lee, “A Petri Net Method for Schedulability
and Scheduling Problems in Single-Arm Cluster Tools with Wafer
Residency Time Constraints,” IEEE Transactions on Semiconductor
Manufacturing, 2008, vol. 21, no. 2, pp. 224-237.

[20] Uno Wikborg and Tae-Eog Lee, “Noncyclic Scheduling for Timed
Discrete-Event Systems with Application to Single-Armed Cluster Tools
Using Pareto-Optimal Optimization,” in Proc. International Conference
on Automation Science and Engineering, 2013, vol. 10, no. 3, pp. 699-
710.

[21] Kan Wu, Ning Zhao, and Carman K. M. Lee, “Queue Time

Approximations for a Cluster Tool with Job Cascading,” IEEE
Transactions on Automation Science and Engineering, 2016, vol. 13,
no. 2, pp. 1200-1207.

[22] Xiuhong Zheng, Jingtao Hu, and Haibin Yu, “Research on a simulation
platform assisting analysis of the cluster tool,” in Proc. International
Conference on Computer Research and Development, pp. 249-253, 2011.

[23] Wlodek M. Zuberek, “Cluster Tools with Chamber
Revisiting—Modeling and Analysis Using Timed Petri Nets,” IEEE
Transactions on Semiconductor Manufacturing, 2004, vol. 17, no. 3,
pp. 333-344.

[24] Plotly Technologies Inc., “Collaborative data science,” Available: https:
//plot.ly.

Authorized licensed use limited to: National Tsing Hua Univ.. Downloaded on August 12,2023 at 07:25:56 UTC from IEEE Xplore. Restrictions apply.

